
workstation ag · Rohrstrasse 36/38 · CH-8152 Glattbrugg

workstation ag

WE-UTS

Installation & User Reference Manual

Version 1.63x - 1.80x Addendum

For NEXTSTEP

and X windows

workstation ag

workstation ag · Rohrstrasse 36/38 · CH-8152 Glattbrugg

workstation ag

Copyright© 1992, 1993 by workstation ag. All rights reserved.

Reproduction of this document, in part or whole, by any means, electronic, facsimile or other-
wise, is prohibited, except by written permission from workstation ag.

The information in this manual is believed to be correct as of the date of publication, however it
is subject to change without notice and does not represent a commitment on the part of worksta-
tion ag. workstation ag disclaims any warranty of any kind, whether express or implied, as to any
matter whatsoever relating to this manual, including without limitation the merchantability or fit-
ness for any direct, indirect, special, incidental or consequential damages arising out of purchase
or use of this manual.

NeXT, the NeXT logo, NEXTSTEP and Workspace Manager are trademarks of NeXT, Inc.
UNIX is a registered trademark of UNIX Systems Labs. DEC, VT100, VT220, VT320 are reg-
istered trademarks of Digital Equipment Corporation. Sun is a registered trademark of Sun
Microsystems Inc. All other trademarks mentioned belong to their respective owners.

The software described in this manual is furnished under a license agreement and may only be
installed, used or copied in accordance with the terms of that agreement.

WE-UTS 1.800 Addendum workstation ag

workstation ag · Rohrstrasse 36/38 · CH-8152 Glattbrugg 3

Table of Contents

1 Preface 5
1.1 Purpose and audience 5
1.2 Summary of content 5

2 New features, parameters and corrections 7
2.1 New features 7
2.2 New parameters 7
2.3 Deleted parameters 7

3 New installation procedure 9
3.1 Extracting the product from the distribution media 9
3.2 What to do when extraction is complete 9
3.2.1 Reading the README file in the installation directory 9
3.2.2 Running the product with the Sample configuration file 9
3.2.3 Host connection 9

4 The WE-HLLAPI programming interface 11
4.1 Foreword 11
4.2 Overview 11
4.3 WE-HLLAPI application overview 12
4.4 New parameter for the WE-XXX emulation product 12
4.5 Important remarks 12
4.6 library calls, hllc functions, attributes and send key mnemonics 13

5 The WE-SCRIPT script language 19
5.1 Foreword 19
5.2 When should one use WE-SCRIPT or WE-HLLAPI 19
5.3 4. WE-SCRIPT variables. 19
5.4 Invoking WE-SCRIPT 20
5.5 WE-SCRIPT token list 20
5.6 Using WE-SCRIPT, guidelines 21
5.7 A commented WE-SCRIPT example 22

6 Changes to the Keymapper tool 25
6.1 Overview 25
6.2 The new <Keyboard_Kind> emulator option. 25
6.3 Keyboard Layout show mode . 26
6.4 New functions mappable to the emulator keyboard or buttons. 26
6.5 Miscellaneous concerning key mapping tool and emulator. 26

7 The WE-LICD licence server program 29
7.1 Overview 29
7.2 Purpose of the password 29
7.3 The password file 29
7.4 New parameter for the emulation products using WE-LICD 30
7.5 Running WE-LICD 30
7.6 New emulator parameter for customizing the use of WE-LICD 31

WE-UTS Addendum
workstation ag

4 workstation ag · Rohrstrasse 36/38 · CH-8152 Glattbrugg

Preface

WE-UTS workstation ag

workstation ag · Rohrstrasse 36/38 · CH-8152 Glattbrugg 5

1 Preface

1.1 Purpose and audience

This manual is a complement to the Release 1.63x manual. It is intended to all people which
need to install, use or maintain the WE-UTS application. The following informations are con-
tained in this book:

-> New software features since Release 1.63x

-> New or deleted parameters since Release 1.63x

-> Problems corrected since 1.63x

1.2 Summary of content

Chapter 2: “New features and parameters”
presents an overview of the WE-UTS Release 1.80x new features against Release
1.63x. Also lists new, modified and deleted parameters.

Chapter 3: “New installation procedure”
presents the new installation procedure for WE-UTS.

Chapter 4: “The WE-HLLAPI programming interface”
describes the implementation of this API within WE-UTS.

Chapter 5: “The WE-SCRIPT script language”
describes the implementation of this very simple custom Workstation AG script
language. Describes how it communicates with a running WE-UTS and provides
some examples how it may be used to make an automatic session logon.

Chapter 6: “Changes for the Keymapper tool”
explains the new features of the KM-UTS keyboard mapping tool.

Chapter 7: “The WE-LICD licence server program”
explains how to setup and run the floating licence server for WE-UTS and how it
interacts with WE-UTS.

Preface

WE-UTS
workstation ag

6 workstation ag · Rohrstrasse 36/38 · CH-8152 Glattbrugg

New features, parameters and corrections

WE-UTS workstation ag

workstation ag · Rohrstrasse 36/38 · CH-8152 Glattbrugg 7

2 New features, parameters and corrections

2.1 New features

Since Release 1.633, the WE-UTS product has been expanded with the following important
new features which will be described in more details in this manual:

-> A programming interface named WE-HLLAPI has been implemented.

-> A script language (WE-SCRIPT) is provided.

-> The key mapping tool has been enhanced to support more keyboard features.

-> A floating licence server (WE-LICD) is provided with the software.

-> Better support for SUN type 5 and NeXT new keyboards.

2.2 New parameters

A brief list of new parameters follows with a brief explaination. A complete description is
included in the next chapters

->Keyboard_Kind You may set values (currently from 1 to 5). See chapter 9 for
more informations..

-> API_Service Is used while you intend to start WE-UTS with an WE-HLLAPI
interface. See WE-HLLAPI and WE-SCRIPT chapters 4 & 5.

-> Host_License_Server Is used if you want to get the WE-UTS licence from the WE-LICD
floating licence server. See WE-LICD licence program chapter 7.

-> License_Server_Policy Is used in relation with the Host_License_Server parameter to
customize how WE-UTS and WE-LICD interacts. See WE-LICD
licence program chapter 7 for more details.

2.3 Deleted parameters

A brief list of deleted parameters follows with a brief explaination.

-> Point_Mouse Deleted without replacement. WE -UTS now always puts the
cursor at the clicked point or at beginning of the next input field

New features, parameters and corrections

WE-UTS
workstation ag

8 workstation ag · Rohrstrasse 36/38 · CH-8152 Glattbrugg

New installation procedure

WE-UTS workstation ag

workstation ag · Rohrstrasse 36/38 · CH-8152 Glattbrugg 9

3 New installation procedure

3.1 Extracting the product from the distribution media

The procedure for extracting the products from the distribution media may vary depending on
your particular workstation and/or environment. The actual procedure is explained on a sheet
attached with your media. Please read this paper and follow the instructions contained therein.

Without going into details, we currently provide 3 different packages kind depending on the
machine (operating system) you run:

-> For NeXTStep based machines, we provide standard NeXTStep packages on diskettes.

-> For SUN Solaris 2.x based machines, we provide standard System V.4 packages.

-> For all other systems (SOLARIS 1.x, HP-UX, AIX, ULTRIX), we provide our own pack-
ages. These are made with a Workstation AG custom packager.

3.2 What to do when extraction is complete

3.2.1 Reading the README file in the installation directory

This README will provide you with the latest informations about the product and explains
how to run the product it the provided Sample configuration file.

3.2.2 Running the product with the Sample configuration file

All products now ship with a Sample configuration file containing a DEMO password allowing
the product to run for 15 minutes at each invocation up to some expiration date (see README
file). This configuration is setup in such a way that NO Host connection is necessary to startup
the product. This allows to make some experiences using WE-UTS menues and get more con-
fortable with the product. Since the keyboard mapping tool requires No password to run, it is
also possible to setup your custom keyboard mapping now and try it with the emulation. Doing
so, the product will be much easier to use as soon as the Host connection becomes available.

3.2.3 Host connection

Setting up the Host connection for WE-UTS requires some experience with UNISYS’s systems.
Your system administrator will be able to provide you with the necessary parameters depending
on your particular host connection. Currently, this may be TCP/IP-Telnet or TCP/IP-Tp0
depending if you have a DCP or HLC communication controller. For setting up these connec-
tions, please refer to the according chapters.

New installation procedure

WE-UTS
workstation ag

10 workstation ag · Rohrstrasse 36/38 · CH-8152 Glattbrugg

The WE-HLLAPI programming interface

WE-UTS workstation ag

workstation ag · Rohrstrasse 36/38 · CH-8152 Glattbrugg 11

4 The WE-HLLAPI programming interface

4.1 Foreword

-> The WE-HLLAPI programming interface is common to all Workstation AG terminal emula-
tors (currently WE-I3179g, WE-UTSg, WE-D320). Its functions are for the most part similar to
IBM’s EHLLAPI programming interface

-> WE-HLLAPI is designed to give users and programmers access to the content of the emula-
tor window (sometimes named the host presentation space) with a set of functions that can be
called from an application program. Because the emulation handles all network communica-
tions to the host system, the user application operates independently of the network protocol.

-> To use WE-HLLAPI, you need an application program written in C language that make calls
to WE-HLLAPI library functions.

-> For a detailed description of each “hllc” API call (list in table 2), please refer to IBM’s docu-
ment No SC23-3115-00 (3270 Emulator for the X-Window System) or to any brochure describ-
ing the HLLAPI standard API interface.

4.2 Overview

-> The picture below summerizes the client/server architecture of the different WE products.
You can recognize that the WE-HLLAPI application is a client against the emulation acting as
server.,

server

HOST

 client

WE-HLLAPI

WE-HLLAPI

 server

API protocol

socket

Host protocol

WE protocol

s

o

c

k

e

t

Emulation
application

s
o
c
k
e
t

Communication
 server

 server
WE-COMD
 client

 EMUL client

connect(host,service)

connect(host,service)

connect(host,service)

The WE-HLLAPI programming interface

WE-UTS
workstation ag

12 workstation ag · Rohrstrasse 36/38 · CH-8152 Glattbrugg

4.3 WE-HLLAPI application overview

A WE-HLLAPI runs in 3 phases:

-> Issuing a “XhllapiInit()” call to take contact with the server (The WE-XXX emulation)

-> Making a number of “hllc()” calls to control the WE-XXX emulation behavior

-> Making a ”XhllapiTerm” call to disconnect from the server.

As an example of WE-HLLAPI application, Workstation AG provides customers with the
source code of the WE-SCRIPT language (see according chapter). Customers can freely modify
and expand this script language. The WE-HLLAPI library, which must be linked to all WE-
HLLAPI applications, is available in object format suitable for your particular machine.

4.4 New parameter for the WE-XXX emulation product

-> As you can see in the above picture, a WE-HLLAPI application (the client) needs to
“connnect” to a WE-HLLAPI server (the WE-XXX emulation product) before being able to
issue any command .This is one of the purposes of the “XhllapiInit()” call.

-> The connection is only possible if the server (the WE-XXX emulation) has registered his ser-
vice on the network. For this purpose, a new parameter (valid for all WE-XXX emulation prod-
ucts) has been added:

API_Service wagAPI # Emul will wait for a client connection on this socket

-> If you put such a line in one of the config files used by a WE-XXX terminal emulator appli-
cation, it will initialize itself and then wait for a client to connect to the “wagAPI” service with-
out displaying any window. Of course, you may use any service name of your own instead of
wagAPI. Note that you must define this service in the “local” services database (/etc/services) or
in some network management system like NIS, Netinfo, ...

-> If all parameters necessary to establish a first host connection were present in the config file,
this connection will be attempted but there will still be NO window displayed

4.5 Important remarks

-> When a client (WE-HLLAPI application) connects to the “wagAPI” service, this client takes
control over th WE-XXX terminal emulation application. It is the client which decides (through
“hllc” library calls) when the WE-XXX emulation should display it’s window and give control
to the operator (user of the WE-XXX emulation).

-> The WE-HLLAPI application may decide to display the WE-XXX window, thus allowing
the user to interact with the emulator, at any given time. Usually, this is done just before discon-
necting form the server through the “XhllapiTerm” library call.

The WE-HLLAPI programming interface

WE-UTS workstation ag

workstation ag · Rohrstrasse 36/38 · CH-8152 Glattbrugg 13

-> A WE-HLLAPI may also decide to give control to the user until a special function is called
by the WE-XXX operator. This function is named “M_EXIT” and can be mapped to a button or
any key combination of the WE-XXX emulator. When the operator activates this function, WE-
HLLAPI (if still connected) regains control over the emulation and can do any operation (ie:
autologoff). Control passing between WE-HLLAPI and WE-XXX can occur many times during
the excution of the WE-HLLAPI application as long as the WE-HLLAPI applications does not
disconnect from the WE-XXX emulator, thus braking the connection for the whole remaining
duration of the WE-XXX session.

-> If the user intends to run more than one WE-HLLAPI application at any given time, he must
start each couple (WE-HLLAPI application / WE-XXX terminal emulation) with a different
“service” name, thus using a different TCP/IP port for each client/server connection..

4.6 library calls, hllc functions, attributes and send key mnemonics

The different library calls, hllc functions, character attributes and send key mnemonics are
detailed in the following tables:

.

Table 1: Summary of library calls supported by WE-HLLAPI

Function Description

XhllapiInit()

char *APIServerHost
char *APIService
unsigned long timeout

Initialize the WE-HLLAPI

Name of the host where runs the terminal emulation application.
Specify the hllapi service name.
Timeout intervall between WE-HLLAPI client and server in ms.

XhllapiTerm() Disconnect the WE-HLLAPI

XhllapiTermAll() Terminate the WE-HLLAPI and the we-xxx emulation

hllc()

short *fnum
char *datastr
short *length
short *retc

Execute all supported WE-HLLAPI functions

WE-HLLAPI function number
pointer to the data string
length of the data string or parameter
return code

Table 2: Summary of hllc functions supported by WE-HLLAPI

Function Constant Name
Description

3270 uts
30

vt300

Change PS Window Name HA_CHANGE_WINDOW_NAME Yes Yes Yes

Convert Position or Row Col HA_CONVERT_POS_ROW_COL Yes Yes Yes

Copy Field To String HA_COPY_FIELD_TO_STR Yes

Copy Presentation Space HA_COPY_PS Yes

Copy Presentation Space To String HA_COPY_PS_TO_STR Yes

The WE-HLLAPI programming interface

WE-UTS
workstation ag

14 workstation ag · Rohrstrasse 36/38 · CH-8152 Glattbrugg

Copy String To Field HA_COPY_STR_TO_FIELD Yes

Copy String To Presentation Space HA_COPY_STR_TO_PS Yes

Find Field Length HA_DISCONNECT_PS Yes

Find Field Position HA_FIND_FIELD_LEN Yes

Query Cursor Loc HA_QUERY_CURSOR_LOC Yes

Query Field Attribute HA_QUERY_FIELD_ATTR Yes

Query Host Update HA_QUERY_HOST_UPDATE Yes

Query Session Status HA_QUERY_SESSION_STATUS Yes

Query System HA_QUERY_SYSTEM Yes

Search Field HA_SEARCH_FIELD Yes

Search Presentation Space HA_SEARCH_PS Yes

Send Key HA_SEND_KEY Yes Yes Yes

Set Cursor HA_SET_CURSOR Yes

Set Session Parameters HA_SET_SESSION_PARMS Yes Yes Yes

Start Host Notification HA_START_HOST_NOTIFY Yes

Stop Host Notification HA_STPO_HOST_NOTIFY Yes

Wait HA_WAIT Yes Yes Yes

Wait Until Key Pressed HA_WAIT_UNTIL_KEY_PRESSED Yes Yes Yes

Window Status HA_WINDOW_STATUS Yes Yes Yes

Table 3: Character attributes.

Position 3270 Definition uts30 Definition vt300 Definition

0 - 1 00 = Normal
01 = Blink
10 = Reverse video
11 = Underline

00 = Normal
01 = Blink
10 = Reverse video
11 = Underline

00 = Normal
01 = Blink
10 = Reverse video
11 = Underline

2 - 4 000 = Default
001 = Blue
010 = Red
011 = Pink
100 = Green
101 = Turquoise
110 = Yellow
111 = White

000 = Default
001 = Blue
010 = Red
011 = Magenta
100 = Green
101 = Cyan
110 = Yellow
111 = White

000 = Black

5 - 7 Reserved (not used) Reserved (not used) Reserved (not used)

Table 2: Summary of hllc functions supported by WE-HLLAPI

Function Constant Name
Description

3270 uts
30

vt300

The WE-HLLAPI programming interface

WE-UTS workstation ag

workstation ag · Rohrstrasse 36/38 · CH-8152 Glattbrugg 15

Table 4: Send key Mnemonics with Uppercase alphabetic l Characters

ASCII
mnemonic

Description Supported
by 3270

Supported
by uts30

Supported
by vt300

@B Left Tab Yes Yes No Action

@C Clear display Yes Yes No Action

@D Delete Yes Yes No Action

@E Transmit Yes Yes Yes

@F Erase EOF Yes Yes No Action

@I Insert Yes No Action No Action

@L Cursor Left Yes Yes Yes

@N New Line Yes Yes Yes

@O Space Yes Yes Yes

@P Print screen Yes Yes Yes

@R Unlock keyboard Yes Yes No Action

@T Right Tab Yes Yes Yes

@U Cursor Up Yes Yes Yes

@V Cursor Down Yes Yes Yes

@Y Caps Lock No Action No Action No Action

@Z Cursor Right Yes Yes Yes

Table 5: Send key Mnemonics with Lowercase Alphabetic and Numeric Characters

ASCII
mnemonic

Description Supported
by 3270

Supported
by uts30

Supported
by vt300

@0 Cursor Home Yes Yes No Action

@1 PF1 / F1 / F1 Yes Yes Yes

@2 PF2 / F2 / F2 Yes Yes Yes

@3 PF3 / F3 / F3 Yes Yes Yes

@4 PF4 / F4 / F4 Yes Yes Yes

@5 PF5 / F5 / F5 Yes Yes Yes

@6 PF6 / F6 / F6 Yes Yes Yes

@7 PF7 / F7 / F7 Yes Yes Yes

@8 PF8 / F8 / F8 Yes Yes Yes

@9 PF9 / F9 / F9 Yes Yes Yes

@a PF10 / F10 / F10 Yes Yes Yes

@b PF11 / F11 / F11 Yes Yes Yes

@c PF12 / F12 / F12 Yes Yes Yes

The WE-HLLAPI programming interface

WE-UTS
workstation ag

16 workstation ag · Rohrstrasse 36/38 · CH-8152 Glattbrugg

@d PF13 / F13 / F13 Yes Yes Yes

@e PF14 / F14 / F14 Yes Yes Yes

@f PF15 / F15 / F15 Yes Yes Yes

@g PF16 / F16 / F16 Yes Yes Yes

@h PF17 / F17 / F17 Yes Yes Yes

@i PF18 / F18 / F18 Yes Yes Yes

@j PF19 / F19 / F19 Yes Yes Yes

@k PF20 / F20 / F20 Yes Yes Yes

@l PF21 / F21 / PF1 Yes Yes Yes

@m PF22 / F22 / PF2 Yes Yes Yes

@n PF23 / F23 / PF3 Yes No Action Yes

@o PF24 / F24 / PF4 Yes No Action Yes

@q End No Action No Action No Action

@s Screen Lock No Action No Action No Action

@t Num Lock No Action No Action No Action

@x PA1 Yes No Action No Action

@y PA2 Yes No Action No Action

@z PA3 Yes No Action No Action

Table 6: Send key Mnemonics For Alphabetic And Symbol Keys

ASCII
mnemonic

Description Supported
by 3270

Supported
by uts30

Supported
by vt300

a through z Lower case alphbetic characters Yes Yes Yes

Athrough Z Upper case alphbetic characters Yes Yes Yes

0 through 9 Numeric characters Yes Yes Yes

Space or Blank Character Yes Yes Yes

~ ~ Yes Yes Yes

! ! Yes Yes Yes

Yes Yes Yes

$ $ Yes Yes Yes

% % Yes Yes Yes

^ ^ Yes Yes Yes

& & Yes Yes Yes

Table 5: Send key Mnemonics with Lowercase Alphabetic and Numeric Characters

ASCII
mnemonic

Description Supported
by 3270

Supported
by uts30

Supported
by vt300

The WE-HLLAPI programming interface

WE-UTS workstation ag

workstation ag · Rohrstrasse 36/38 · CH-8152 Glattbrugg 17

‘ ‘ Yes Yes Yes

((Yes Yes Yes

)) Yes Yes Yes

* * Yes Yes Yes

+ + Yes Yes Yes

’ ’ Yes Yes Yes

- - Yes Yes Yes

. . Yes Yes Yes

/ / Yes Yes Yes

: : Yes Yes Yes

; ; Yes Yes Yes

< < Yes Yes Yes

= = Yes Yes Yes

> > Yes Yes Yes

? ? Yes Yes Yes

{ { Yes Yes Yes

| | Yes Yes Yes

} } Yes Yes Yes

[[Yes Yes Yes

]] Yes Yes Yes

Table 7: Send key Mnemonics with @A

ASCII
mnemonic

Description Supported
by 3270

Supported
by uts30

Supported
by vt300

@A@D Word Delete Yes No Action No Action

@A@F Erase Input Yes No Action No Action

@A@H System Request Yes No Action No Action

@A@J Cursor Select Yes No Action No Action

@A@Q Attention Yes No Action No Action

@A@T Print Screen Yes Yes Yes

@A@y Next Word (in a formated PS) Yes No Action No Action

@A@z Previous Word (in a formated PS) Yes No Action No Action

Table 6: Send key Mnemonics For Alphabetic And Symbol Keys

ASCII
mnemonic

Description Supported
by 3270

Supported
by uts30

Supported
by vt300

The WE-HLLAPI programming interface

WE-UTS
workstation ag

18 workstation ag · Rohrstrasse 36/38 · CH-8152 Glattbrugg

Table 8: Send key Mnemonics with @S

ASCII
mnemonic

Description Supported
by 3270

Supported
by uts30

Supported
by vt300

@S@x Duplicate Yes Yes No Action

@S@y Field Mark Yes No Action No Action

Table 9: Send key Mnemonics with Special Characters Keys

ASCII
mnemonic

Description Supported
by 3270

Supported
by uts30

Supported
by vt300

@@ @ Yes Yes Yes

@< Backspace Yes Yes No Action

The WE-SCRIPT script language

WE-UTS workstation ag

workstation ag · Rohrstrasse 36/38 · CH-8152 Glattbrugg 19

5 The WE-SCRIPT script language

5.1 Foreword

-> WE-SCRIPT is delivered with all Workstation AG emulation products and is aimed to sim-
plify the operators job by allowing to automatisize operations like logging or unlogging to/from
a particular system.

-> Since WE-SCRIPT is nothing else than a particular WE-HLLAPI application, all hints and
remarks we did in the previous chapter concerning WE-HLLAPI are equally valid for WE-
SCRIP. Therefore, we urge you to take a look at the previous chapter before attempting to use
WE-SCRIPT.

-> In it’s original form (as delivered by Workstation AG), WE-SCRIPT implements a fairly lim-
ited set of verbs which are mostly suffisant. As mentioned in the WE-HLLAPI chapter, WE-
SCRIPT may be obtained in source code form and is thus expandable by the user. Such
enhancements are of course not supported by Workstation AG.

5.2 When should one use WE-SCRIPT or WE-HLLAPI

-> WE-SCRIPT with it’s limited functionality (as distributed by WAG) is the best choice for
users who can cope with the limited functions set. Writing a WE-SCRIPT script file is a matter
of minutes and it can be modified at any time without any recompilation.

-> When WE-SCRIPT limited functionalities are not suffisant, one may choose to write an
enterely new WE-HLLAPI application to do the job or to expand the existing WE-SCRIPT (we-
hllapi) application to implement new tokens or to expand existing ones. The choice between
those 2 approaches will be dictated by the amount of work to do and by the fact that script files
will be easier to maintain by a system administrator.

5.3 4. WE-SCRIPT variables.

The SCRIPT application allow using command-line variables.

These variables are defined when running the SCRIPT application. They have the same syntax
as in a shell script, that is <$0> for the base name of the SCRIPT, <$1> for the first parameter,
<$2> for the second one, etc... .

ie, if you type:

 MyScript-s /tmp/ScriptFile -p1 354 -p7 768 -p2 "var" -p3 user

then the variables will have the values:

$0= "ScriptFile"

The WE-SCRIPT script language

WE-UTS
workstation ag

20 workstation ag · Rohrstrasse 36/38 · CH-8152 Glattbrugg

$1 = 354

$2 = "var"

$3 = "user"

$7 = 768

5.4 Invoking WE-SCRIPT

WE-SCRIPT is invoked as follow:

we-script -s script_file [-p1 par1] [-p2 par2] . [-p32 par32]

where:

 -p1...-p32 are command line arguments which are named $1...$32 in the script.

5.5 WE-SCRIPT token list

In it’s 1st release, WE-SCRIPT will be delivered with the following tokens:

LogTo Filename # Establish Filename as log device. Default
is standard error (stderr).

Echo “String” # Write String to log device
Exit Number # End script and return Number as exit status

Connect [host] ServiceNameTime # Connect to we-xxx hllapi server
through ServiceName. Timeout after Time

Disconnect # Disconnect from we-xxx hllapi server, but
keep the emulation running

Terminate # Disconnect from we-xxx hllapi server and
terminate the emulation

Call # NOT implemented
Hangup # NOT implemented

Foreground # Instruct we-xxx to display it’s windowq

Background # Instruct we-xxx to hide it’s window

Sleep Time # Suspend script execution for Time seconds
TestReady Time # Wait up to Time seconds until kbd unlocks
Match “String” [time] # Search for String in presentation space.

If time present, try each second up to time
and set status accordingly

The WE-SCRIPT script language

WE-UTS workstation ag

workstation ag · Rohrstrasse 36/38 · CH-8152 Glattbrugg 21

Type [“String”, TOKEN,...] # Simulate keyboard entries (incl AID keys)
Example : Type "@0@V@V@TUserID" will:
====== Set the cursor at Home, go two lines down,
perform a Tab to go on the first editable
field and write "UserID" in it..

If [ok, bad] # Test result of previous operation and
execute next script line if test matches

Goto TheLabel # Jump to and continue script excution
at TheLabel

WaitExit # Stop script execution here until operator
call the M_EXIT function by pressing
the key or the button assigned to it

TheLabel: # A token followed by a colon is a label
You can jump to labels with Goto

#ThecComment # A line beginning with a # is a comment line

5.6 Using WE-SCRIPT, guidelines

-> Your script should always begin with the “Connect” instruction in order to initialize the com-
munication between your script and the currently running terminal emulation application.

-> While connected, , your script can deal with the emulation application, but by default, the
DISPLAY IS NOT VISIBLE . If you want to display the window, you must issue the Fore-
ground instruction . This allow you, (for example in an auto-logon script), to hide all operations
until your login is successfully completed. So the window is set to visible only when you are in
your account.

-> In case of errors, (ie, a “match” token returns a “bad” result), it is wise to make the window
visible with the “Foreground” instruction before displaying some error message within the emu-
lator with the “type” instruction.

-> Making the window visible with the “foreground” instruction also enables the user to type in
it. Thus, it is wise to display the window only if the user has to interact with it.

The WE-SCRIPT script language

WE-UTS
workstation ag

22 workstation ag · Rohrstrasse 36/38 · CH-8152 Glattbrugg

5.7 A commented WE-SCRIPT example

Very simple SCRIPT session

====================

This scripts expects the following command line invocation:

we-script -p1 Hostname -p2 ServiceName -p3 ConnectTimeOut

First, echo all received variables

Echo "$1, $2, $3"

Then, try a connection to the emulator

Connect $1 $2 $3

If ok

Goto TestLogon

Echo "Sorry, connect FAILED !!!"

Terminate

TestLogon:

Match "Please Logon" 10

If ok

Goto EnterLogon

NoLogonFromHost:

Foreground

Type "@0@FMessage from SCRIPT: Sorry, BAD LOGON ! Press EXIT"

Goto GiveControlToUser

EnterLogon:

Type "MyCommand@E"

TestReady 30

If bad

Goto NoLogonFromHost

Match "USERID" 10

The WE-SCRIPT script language

WE-UTS workstation ag

workstation ag · Rohrstrasse 36/38 · CH-8152 Glattbrugg 23

If bad

Goto NoLogonFromHost

Type "MyUserId@T"

GiveControlToUser:

Foreground

Wait for user to call Exit function (M_EXIT mapped to a key or a button):

WaitExit

User has pressed exit, perform autologoff:

Type "Logoff"

Match "Logoff completed" 10

If bad

Goto NoLogoffFromHost

Terminate

NoLogoffFromHost:

Type "SORRY, automatic logoff failed, do it yourself, please !!!"

Disconnect

The WE-SCRIPT script language

WE-UTS
workstation ag

24 workstation ag · Rohrstrasse 36/38 · CH-8152 Glattbrugg

Changes to the Keymapper tool

WE-UTS workstation ag

workstation ag · Rohrstrasse 36/38 · CH-8152 Glattbrugg 25

6 Changes to the Keymapper tool

6.1 Overview

Some design changes have been made to the Keymapper tool for Release 1.800 and concerns all
emulators (WE-UTS, WE-D320 and WE-I3179). When both the emulations and the corre-
sponding tool are concerned, they will be treated concurrently in this chapter.

6.2 The new <Keyboard_Kind> emulator option.

A new option has been introduced for all emulators. For now, only SUN and NeXT computers
are concerned. It’s syntax is as follow:

Keyboard_Kind N

Where N can be:

1 (default) SUN type 4 keyboard
NeXT 1st keyboard (all black)

2 NeXT 2nd keyboard (green power key)

3 Standard MAC keyboard on NeXT

4 Extended MAX keyboard (F keys) on NeXT

5 SUN type 5 keyboards

For the emulation, it is suffisant to put the correct option in the configuration file used. The key
mapping tool must be started with the new <-kk N> option.

EXAMPLE:

km-uts NeXT Us.UTS_keymap -kk 4

This line would allow one to setup a good keyboard mapping for the WE-UTS emulator on a
NeXT computer equipped with a Macintosh extended keyboard. Of course, this user needs to
put the following in his config(s) file(s) to effectively use this mapping:

Keyboard_Kind 4

Changes to the Keymapper tool

WE-UTS
workstation ag

26 workstation ag · Rohrstrasse 36/38 · CH-8152 Glattbrugg

6.3 Keyboard Layout show mode .

We have changed the keyboard layout show mode (goodies menu of the meulators) behavior as
follow:

-> If a comment has been entered in the comment field with the key mapping tool, it is shown.

-> If no comment has been entered for that function, the key codes are shown.

Previously, both were shown. This was not always good, because the key codes may be very
confusing for the normal user. So, we recommend to system administrators to put comments for
each key combination which is not self explanatory (or even cryptic...)

6.4 New functions mappable to the emulator keyboard or buttons.

The following mappable functions have been added to WE-UTS and can be found in the list dis-
played by the KM-UTS key mapping utility. The same names may also be used to map func-
tions to the buttons around the window:

-> M_PRINT Will make a hardcopy using the current format settings

6.5 Miscellaneous concerning key mapping tool and emulator.

Thereafter, a brief list of the enhancements to the keyboard mapping since Release 1.63x.

-> When you use keyboard "ESCAPE sequences" (see keyboard mapper), you now get a "com-
pose" indication on the emulator status line. This is a useful information for the operator.

-> An ESCAPE sequence may now be aborted by pressing ESCAPE again.

-> On NeXTStep, the definition file for the keyboard layout (“keylay.dat” file) is always loaded
at application startup if it is in the same folder as the application. This helps starting the key-
board mapping tool with a double click on the key mapping file (with the corresponding
.D320_keymap, .I3179_keymap, .UTS_keymap extension).

-> The NeXT Keypad keys generate a new “Num-Lock” modifier. Typing the '2' key on the
main part of the keyboard will generate "2", typing '2' on the numeric keypad will generate
"Num-Lock 2".

-> All X modifiers are handled. They're displayed as 'Meta[x]' where x is a digit from 0 to 9
(actually only 0 to 2) in the keymapper application.

-> Some "special" keys (keys that have a corresponding X name) that had been omitted are now
available (/Prior, /Next, ...).

-> A new value for the "Keyboard_Kind" parameter has been created to support the SUN type 5
keyboards. The problem was to distinguish between cursor keys and cursor functions on the
keypad with the num-lock modifier. If you set the "Keyboard_Kind" to 5, the keypad cursor
keys will return new codes (of format '$...'). The same option is available for the key-mapper
tool.

Changes to the Keymapper tool

WE-UTS workstation ag

workstation ag · Rohrstrasse 36/38 · CH-8152 Glattbrugg 27

-> The compose key (SUN keyboards) now works. This is useful for people whih have US key-
boards and must type european characters. It is NOT necessary to use the key mapping tool for
this purpose since such “composite” characters are already mapped by default in the terminal
emulators.

Changes to the Keymapper tool

WE-UTS
workstation ag

28 workstation ag · Rohrstrasse 36/38 · CH-8152 Glattbrugg

The WE-LICD licence server program

WE-UTS workstation ag

workstation ag · Rohrstrasse 36/38 · CH-8152 Glattbrugg 29

7 The WE-LICD licence server program

7.1 Overview

WE-LICD is a Workstation AG custom floating licence server delivered free of charge with all
software products and allowing flexible licencing over your network. Like all such products,
WE-LICD should be run on a secure machine running at all time and attainable by all client
machines. The installation of WE-LICD is very easy. All what it needs is a simple password file
containing a single entry, the password provided by Workstation AG.

7.2 Purpose of the password

The password (an ASCII string containing 34 characters) contains the following informations:

-> The product kind (WE-UTSc, WE-UTSg, WE-D320, WE-I3179c, WE-I3179g, W-PLAN,...)

-> The number of instances of the product which may run at any given time.

-> The licence run time (for DEMO products)

-> The licence expiration date

7.3 The password file

As previously explained, the password file contains a single entry, the password. It may also
contain some comments of your own.

The format of the single “Pass_Word” parameter and from the comment lines is the same as for
all emulator products. Please refer to that documentation for details.

A WE-LICD "config" file MUST contain the following entry:
===

Pass_Word PutYourLicenceServerePasswordHere

The WE-LICD licence server program

WE-UTS
workstation ag

30 workstation ag · Rohrstrasse 36/38 · CH-8152 Glattbrugg

7.4 New parameter for the emulation products using WE-LICD

To tell the emulation that a Network Licence Server (WE-LICD) must be used, the following
entry must be added into your config file(s):

Host_License_Server HostName

Where: “Hostname" is the name of the host where the WE-LICD server is running.

Important Remark: If a line like:

Pass_Word G;9C9:9K8=CBYOIR-COUCOU7=4=7>:LA

is also present in the config file(s), the "Host_License_Server" entry takes precedence over it.
Note that this may change in a further release. Therefore, we discourage you to have both a
"Pass_Word" and an "Host_License_Server" entry in your config file(s). The best in to comment
out (with a # at the first line position) the unused entry.

7.5 Running WE-LICD

The licence server is started as follow:

we-licd ConfigFileName [-lc] [-lp LogFilePath]

Where:

ConfigFileName must be the first parameter. This is the name of the file where the
Network Licence Password is stored.

-lc is optional (means log to console). Normally, WE-LICD creates a file
(see -lp option below for possible alternate path) to store it’s logging
information. This file is stored in </tmp/we-licd.PID> where PID is
the process ID of the WE-LICD instance.

REMARK: Depending on your particular system, writing messages
on the console may destroy the appearance of your graphical envi-
ronment. Mostly, this can be repaired with the <refresh> function of
your window manager.

-lp LogFilePath may be used to specify a custom pathname for storing the <we-licd.-
PID> logging file.

REMARKS:

 ->The WE-LICD floating licence server serves only one product type at a time. You may start
more than one instance of WE-LICD on the same machine, each for a different product.

The WE-LICD licence server program

WE-UTS workstation ag

workstation ag · Rohrstrasse 36/38 · CH-8152 Glattbrugg 31

-> RPC's are used between client (WE-UTS, WE-D320,...) and WE-LICD. The client product
automatically "searches" the server for a WE-LICD instance on the server machine that matches
it's type.

-> When a client terminates normally (not killed...), his slot (licence) is immediately freed in the
WE-LICD server. Otherwise, the server will automatically free it after about 5 minutes.

7.6 New emulator parameter for customizing the use of WE-LICD

There may be users which have licences for 2 levels of the same product. Let say for WE-
I3179c (character terminal emulation) and for WE-I3179g (graphic terminal emulation). If such
users have floating licences for both product, they will have to run 2 instances of WE-LICD
(one for each licence). Howewer, the need to decide which user will get which kind of licence
will probably arise. For this, they may put the following entry in their config files:

License_Server_Policy Policy

Where: “Policy" may have 3 different values as follow:

Best The emulation will try to get a licence from the WE-LICD serving the best
possible licence (in our case graphic). If no such licence is available, it will
try the less valuable one before failing if none is available. This is the
default behavior.

Graphics The emulation will try to get a licence from the WE-LICD serving the a
graphic licence only. If none is available, it will fail.

Text The emulation will try to get a licence from the WE-LICD serving the a
text licence only. If none is available, it will fail.

The WE-LICD licence server program

WE-UTS
workstation ag

32 workstation ag · Rohrstrasse 36/38 · CH-8152 Glattbrugg

Example:

-> 1st WE-LICD instance serving 4 WE-UTSg (graphic) licenses

-> 2nd WE-LICD instance serving 10 WE-UTSc (text) licences

The behaviour will be as follow:

For users with License_Server_Policy set to Best

-> The clients connecting first will get the 4 graphic licences and clients coming later will get
the text only licences.

For users with License_Server_Policy set to Graphics

-> These clients will either get a graphic license or no licence at all if no more are available.

For users with License_Server_Policy set to Text

-> These clients will either get a text license or no licence at all.

REMARKS:

-> By setting this parameter to one of these 3 values depending on the client, you will be able to
decide in advance who will qualify for either kind of licence.

-> The “License_Server_Policy” parameter is only useful if both WE-COMD instances run on
the same machine because there may be only one “Host_License_Server” parameter in a config-
uration file.

